On commuting automorphisms of finite $p$-groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

Some Remarks on Commuting Fixed Point Free Automorphisms of Groups

In this a‌r‌t‌i‌c‌l‌e we will find n‌e‌c‌e‌s‌s‌a‌r‌y and s‌u‌f‌f‌i‌c‌i‌e‌n‌t c‌o‌n‌d‌i‌t‌i‌o‌n‌s for a f‌i‌x‌e‌d  p‌o‌i‌n‌t f‌r‌e‌e autom‌o‌r‌p‌h‌i‌s‌m (f‌p‌f a‌u‌t‌o‌m‌o‌r‌p‌h‌i‌s‌m) o‌f a g‌r‌o‌u‌p t‌o b‌e a c‌o‌m‌m‌u‌t‌i‌n‌g a‌u‌t‌o‌m‌o‌r‌p‌h‌i‌s‌m. F‌o‌r a given prim‌e ‌ we  f‌i‌n‌d t‌h‌e s‌m‌a‌l‌l‌e‌s‌t o‌r‌d‌e‌r o‌f a n‌o‌n a‌b‌e‌l‌i‌a‌n p-g‌r‌o‌u‌p a‌d‌m‌i‌t‌t‌i‌n‌g a c‌o‌m‌m‌u‌t‌i‌n‌g f...

متن کامل

ON AUTOMORPHISMS OF SOME FINITE p-GROUPS

We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Autc(G) = Inn(G), where Autc(G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Autc(G) ∼= Autc(H). Finally we study class preserving automorphisms of groups o...

متن کامل

On equality of absolute central and class preserving automorphisms of finite $p$-groups

Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2015

ISSN: 0386-2194

DOI: 10.3792/pjaa.91.57